Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A new unified and integrated method for the numerical‐analytical calculation of Jk‐integrals of an in‐plane traction free interfacial crack in homogeneous orthotropic and isotropic bimaterials is presented. The numerical algorithm, based on the boundary element crack shape sensitivities, is generic and flexible. It applies to both straight and curved interfacial cracks in anisotropic and/or isotropic bimaterials. The shape functions of semidiscontinuous quadratic quarter point crack tip elements are correctly scaled to adapt the singular oscillatory near tip field of tractions. The length of crack is designated as the design variable to compute the strain energy release rate precisely. Although an analytical equation relating J1 and stress intensity factors (SIFs) exists, a similar relation for J2 in debonded anisotropic solids for decoupling SIFs is not available. An analytical expression was recently derived by this author for J2 in aligned orthotropic/orthotropic bimaterials with a straight interface crack. Using this new relation and the present computed Jk values, the SIFs can be decoupled without the need for an auxiliary equation. Here, the aforementioned analytical relation is reconstructed for cubic symmetry/isotropic bimaterials and used with the present numerical algorithm. An example with known analytical SIFs is presented. The numerical and analytical magnitudes of Jk for an interface crack in orthotropic/orthotropic and cubic symmetry/isotropic bimaterials show an excellent agreement.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.