2017
DOI: 10.1111/ffe.12587
|View full text |Cite
|
Sign up to set email alerts
|

An analytical expression for the J2‐integral of an interfacial crack in orthotropic bimaterials

Abstract: A Tafreshiorcid

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 54 publications
0
10
0
Order By: Relevance
“…For contour s 1 , z 1 = z 2 = z , ( n 2 ) ds = − dz , and for contour s 2 , z 1 = − iμ 1 z , z 2 = − iμ 2 z , ( n 1 ds ) = − idz . Based on Equation , the displacement derivative vectors for each material are uj,1n=20.12emReAcenterf1zf2zn,uj,2n=20.12emReAPcenterf1z1f2z2n, where centerf1z1f2z2n=142π×1icenter1μ1μ2μ1001μ2μ2μ1n[][]ψ1()zn+iμ2nβ21ϕ1()zn[]μ2nψ1()z…”
Section: Review Of the Analytical Evaluation Of The Jk‐integrals For mentioning
confidence: 94%
See 4 more Smart Citations
“…For contour s 1 , z 1 = z 2 = z , ( n 2 ) ds = − dz , and for contour s 2 , z 1 = − iμ 1 z , z 2 = − iμ 2 z , ( n 1 ds ) = − idz . Based on Equation , the displacement derivative vectors for each material are uj,1n=20.12emReAcenterf1zf2zn,uj,2n=20.12emReAPcenterf1z1f2z2n, where centerf1z1f2z2n=142π×1icenter1μ1μ2μ1001μ2μ2μ1n[][]ψ1()zn+iμ2nβ21ϕ1()zn[]μ2nψ1()z…”
Section: Review Of the Analytical Evaluation Of The Jk‐integrals For mentioning
confidence: 94%
“…Equation can be written as G()zn=142π[]ψn()ziβ120.12emϕn()ziβ210.12emϕn()zψn()z[]K2K1=142πLn0.12emK. …”
Section: Interfacial Crack and Interface Sifsmentioning
confidence: 99%
See 3 more Smart Citations