We develop new Markov chain Monte Carlo samplers for neighborhood generation in global optimization algorithms based on Hit-and-Run. The success of Hit-and-Run as a sampler on continuous domains motivated Discrete Hit-and-Run with random biwalk for discrete domains. However, the potential in efficiencies in the implementation, which requires a randomization at each move to create the biwalk, lead us to a different approach that uses fixed patterns in generating the biwalks. We define Sphere and Box Biwalks that are pattern-based and easily implemented for discrete and mixed continuous/discrete domains. The pattern-based Hit-and-Run Markov chains preserve the convergence properties of Hitand-Run to a target distribution. They also converge to continuous Hit-and-Run as the mesh of the discretized variables becomes finer, approaching a continuum. Moreover, we provide bounds on the finite time performance for the discrete cases of Sphere and Box Biwalks. We embed our samplers in an Improving Hit-and-Run global optimization algorithm and test their performance on a number of global optimization test problems.