Hit-and-run, a class of MCMC samplers that converges to general multivariate distributions, is known to be unique in its ability to mix fast for uniform distributions over convex bodies. In particular, its rate of convergence to a uniform distribution is of a low order polynomial in the dimension. However, when the body of interest is difficult to sample from, typically a hyperrectangle is introduced that encloses the original body, and a one-dimensional acceptance/rejection is performed. The fast mixing analysis of hit-and-run does not account for this one-dimensional sampling that is often needed for implementation of the algorithm. Here we show that the effect of the size of the hyperrectangle on the efficiency of the algorithm is only a linear scaling effect. We also introduce a variation of hit-and-run that accelerates the sampler and demonstrate its capability through a computational study.
Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-伪. These simultaneous 1-伪 probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods.
We develop new Markov chain Monte Carlo samplers for neighborhood generation in global optimization algorithms based on Hit-and-Run. The success of Hit-and-Run as a sampler on continuous domains motivated Discrete Hit-and-Run with random biwalk for discrete domains. However, the potential in efficiencies in the implementation, which requires a randomization at each move to create the biwalk, lead us to a different approach that uses fixed patterns in generating the biwalks. We define Sphere and Box Biwalks that are pattern-based and easily implemented for discrete and mixed continuous/discrete domains. The pattern-based Hit-and-Run Markov chains preserve the convergence properties of Hitand-Run to a target distribution. They also converge to continuous Hit-and-Run as the mesh of the discretized variables becomes finer, approaching a continuum. Moreover, we provide bounds on the finite time performance for the discrete cases of Sphere and Box Biwalks. We embed our samplers in an Improving Hit-and-Run global optimization algorithm and test their performance on a number of global optimization test problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.