Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The use of mosses as biomonitors operates as an indicator of their concentration in the environment, becoming a methodology which provides a significant interpretation in terms of environmental quality. The different types of pollution are variables that can not be measured directly in the environment - latent variables. Therefore, we propose the use of factor analysis to estimate these variables in order to use them for spatial modelling. On the contrary, the main aim of the commonly used principal components analysis method is to explain the variability of observed variables and it does not permit to explicitly identify the different types of environmental contamination. We propose to model the concentration of each heavy metal as a linear combination of its main sources of pollution, similar to the case of multiple regression where these latent variables are identified as covariates, though these not being observed. Moreover, through the use of geostatistical methodologies, we suggest to obtain maps of predicted values for the different sources of pollution. With this, we summarize the information acquired from the concentration measurements of the various heavy metals, and make possible to easily determine the locations that suffer from a particular source of pollution.
The use of mosses as biomonitors operates as an indicator of their concentration in the environment, becoming a methodology which provides a significant interpretation in terms of environmental quality. The different types of pollution are variables that can not be measured directly in the environment - latent variables. Therefore, we propose the use of factor analysis to estimate these variables in order to use them for spatial modelling. On the contrary, the main aim of the commonly used principal components analysis method is to explain the variability of observed variables and it does not permit to explicitly identify the different types of environmental contamination. We propose to model the concentration of each heavy metal as a linear combination of its main sources of pollution, similar to the case of multiple regression where these latent variables are identified as covariates, though these not being observed. Moreover, through the use of geostatistical methodologies, we suggest to obtain maps of predicted values for the different sources of pollution. With this, we summarize the information acquired from the concentration measurements of the various heavy metals, and make possible to easily determine the locations that suffer from a particular source of pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.