In smartphone-based crowd/participatory sensing systems, it is necessary to identify the actual sensor data provider. In this context, this paper attempts to recognize the users' identity based on their gait patterns (i.e. unique walking patterns). More specifically, a deep convolution neural network (CNN) model is proposed for the user identification with accelerometer data generated from users smartphone sensors. The proposed model is evaluated based on the real-world benchmark dataset (accelerometer biometric competition data) having a total of 387 users accelerometer sensor readings (60 million data samples). The performance of the proposed CNN-based approach is also compared with five baseline methods namely Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), and K-Nearest Neighbours (KNN). It is observed that the proposed model achieves better results (accuracy = 98.8%, precision = 0.94, recall = 0.97, and F1-score = 0.95) as compared to the baseline methods.