Abstract. Vibration analysis has proven to be the most effective method for machine condition monitoring to date. Various effective signal analysis methods to analyze and extract fault signature that embedded in the raw vibration signals have been introduced in the past few decades such as fast Fourier transform (FFT), short time Fourier transform (STFT), wavelets analysis, empirical mode decomposition (EMD), Hilbert-Huang transform (HHT), etc. however, these is still a need for human to interpret vibration signature of faults and it is regarded as one of the major challenge in vibration condition monitoring. Thus, most recent researches in vibration condition monitoring revolved around using Artificial Intelligence (AI) techniques to automate machinery faults detection and diagnosis. The most recent literatures in this area show that researches are mainly focus on using machine learning techniques for data fusion, features fusion, and also decisions fusion in order to achieve a higher accuracy of decision making in vibration condition monitoring. This paper provides a review on the most recent development in vibration signal analysis methods as well as the AI techniques used for automated decision making in vibration condition monitoring in the past two years.