The existence of joint clearances in the nose landing gear (NLG) is inevitable and significantly affects shimmy. It was found that the interaction of each joint clearance is closely related to the analysis of shimmy stability. In this study, the shimmy model of NLG with three-dimensional joint clearance was established by using LMS VirtualLab Motion. Based on the method of multibody dynamics (MBD), the load transfer mechanism at the joints of the NLG was analyzed, and the oscillation characteristics with multiple joint clearances were investigated. The results indicate that the radial and axial contact force of the joint decreases from bottom to top, and the radial contact forces are relatively high at the end positions of the connection shafts, resulting in uneven wear. When the joint clearance reaches a certain value, periodic shimmy of the NLG will occur, and an increase in torsional damping can reduce the amplitude of the shimmy. Therefore, this study reveals the influence of multi-position joint clearance coupling on shimmy, and provides a valuable insight for the maintenance and design of landing gear joints.