This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
This article presents a novel approach for damage detection applied to structural health monitoring systems exploring the residues obtained from singular spectrum analysis. In this technique, a lead zirconate titanate patch acting as actuator excites the structure, and three other patches are used as sensors to receive the structural responses. This method is based on a high-frequency excitation range in order to overcome the problem caused when the low-vibration modes are excited. In this method, a wideband chirp signal, with low amplitude and variable frequency, is used to excite the structure. The response signals are acquired in the time domain, and the singular spectrum analysis procedure is performed. The residues obtained between the reconstructed and original time series are used to compute statistical metrics. The residues calculated from singular spectrum analysis are used to compute the root mean square deviation and correlation coefficient deviation metric indices, rendering the damage detection approach more reliable. Tests were carried out on an aluminum plate, and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for structural health monitoring applications. The results exploring different numbers of components used during the reconstruction process of time series are obtained, and the highlights are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.