2018
DOI: 10.1214/18-ss120
|View full text |Cite
|
Sign up to set email alerts
|

An approximate likelihood perspective on ABC methods

Abstract: We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
23
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
2
1

Relationship

2
6

Authors

Journals

citations
Cited by 28 publications
(25 citation statements)
references
References 267 publications
(355 reference statements)
0
23
0
2
Order By: Relevance
“…Next, we let w (d, ) be a non-negative, decreasing (in d), and bounded (importance sampling) weight function (cf. Section of [14]), which takes as inputs a data discrepancy measurement d = D (x n , y m ) ≥ 0 and a calibration parameter > 0. Using the weight and discrepancy functions, we can propose the following approximation for (2).…”
Section: Importance Sampling Abcmentioning
confidence: 99%
See 1 more Smart Citation
“…Next, we let w (d, ) be a non-negative, decreasing (in d), and bounded (importance sampling) weight function (cf. Section of [14]), which takes as inputs a data discrepancy measurement d = D (x n , y m ) ≥ 0 and a calibration parameter > 0. Using the weight and discrepancy functions, we can propose the following approximation for (2).…”
Section: Importance Sampling Abcmentioning
confidence: 99%
“…In this article, we develop upon the discrepancy measurement approach of [17], via the importance sampling ABC (IS-ABC) approach, which makes use of a weight function; see e.g. [14]. In particular, we report on a class of ABC algorithms that utilize the two-sample energy statistic (ES) of [21] (see also [22; 23; 24; 25]).…”
Section: Introductionmentioning
confidence: 99%
“…The ABC methodology can be considered as a (class of) popular algorithms that achieves posterior simulation by avoiding the computation of the likelihood function: see Beaumont (2010), Marin et al (2012) and Karabatsos and Leisen (2018) for recent surveys. As remarked by Marin et al (2012), the first genuine ABC algorithm was introduced by Pritchard et al (1999) in a population genetics setting.…”
Section: Bayesian Inference For the Wallenius Modelmentioning
confidence: 99%
“…A resolução numérica pode ser feita facilmente usando métodos de amostragem do tipo Monte Carlo. Além de serem computacionalmente intensivos, estes métodos requerem o conhecimento explícito da função de verossimilhança (p(y o |θ)), o que nem sempreé possível, seja por não se conhecer de fato a relação entre y o e θ ou por ser intratável na prática por relacionar número grande de amostras e/ou parâmetros ou por complexidade funcional [4]. Nestas situações, a computação bayesiana aproximada (ABC -Approximate Bayesian Computation) tem se tornado uma alternativa atrativa por ser um método "livre de função de verossimilhança".…”
Section: Introductionunclassified
“…As quantidades de simulações executadas e os valores mais prováveis estão indicados em parênteses e abaixo dos gráficos, respectivamente. 2176 × 10 −4 5, 2056 × 10 −4 7, 02 × 10 −4…”
unclassified