2020
DOI: 10.48550/arxiv.2002.03697
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An Approximation of Solutions to Heat Equations defined by Generalized Measure Theoretic Laplacians

Abstract: We consider the heat equation defined by a generalized measure theoretic Laplacian on [0, 1]. This equation describes heat diffusion in a bar such that the mass distribution of the bar is given by a non-atomic Borel probabiliy measure µ, where we do not assume the existence of a strictly positive mass density. We show that weak measure convergence implies convergence of the corresponding generalized Laplacians in the strong resolvent sense. We prove that strong semigroup convergence with respect to the uniform… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?