We study stochastic wave equations in the sense of Walsh defined by fractal Laplacians on Cantor-like sets. For this purpose, we give an improved estimate on the uniform norm of eigenfunctions and approximate the wave propagator using the resolvent density. Afterwards, we establish existence and uniqueness of mild solutions to stochastic wave equations provided some Lipschitz and linear growth conditions. We prove Hölder continuity in space and time and compute the Hölder exponents. Moreover, we are concerned with the phenomenon of weak intermittency.
We study stochastic wave equations in the sense of Walsh defined by fractal Laplacians on Cantor-like sets. For this purpose, we give an improved estimate on the uniform norm of eigenfunctions and approximate the wave propagator using the resolvent density. Afterwards, we establish existence and uniqueness of mild solutions to stochastic wave equations provided some Lipschitz and linear growth conditions. We prove H¨older continuity in space and time and compute the Hölder exponents. Moreover, we are concerned with the phenomenon of weak intermittency.
We consider the heat equation defined by a generalized measure theoretic Laplacian on [0, 1]. This equation describes heat diffusion in a bar such that the mass distribution of the bar is given by a non-atomic Borel probabiliy measure µ, where we do not assume the existence of a strictly positive mass density. We show that weak measure convergence implies convergence of the corresponding generalized Laplacians in the strong resolvent sense. We prove that strong semigroup convergence with respect to the uniform norm follows, which implies uniform convergence of solutions to the corresponding heat equations. This provides, for example, an interpretation for the mathematical model of heat diffusion on a bar with gaps in that the solution to the corresponding heat equation behaves approximately like the heat flow on a bar with sufficiently small mass on these gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.