Low pH-induced fusion mediated by the hemagglutinin (HA) of influenza virus involves conformational changes in the protein that lead to the insertion of a "fusion peptide" domain of this protein into the target membrane and is thought to perturb the membrane, triggering fusion. By using whole virus, purified HA, or HA ectodomains, we found that shortly after insertion, pores of less than 26 Å in diameter were formed in liposomal membranes. As measured by a novel assay, these pores stay open, or continue to close and open, for minutes to hours and persist after pH neutralization. With virus and purified HA, larger pores, allowing the leakage of dextrans, were seen at times well after insertion. For virus, dextran leakage was simultaneous with lipid mixing and the formation of "fusion pores," allowing the transfer of dextrans from the liposomal to the viral interior or vice versa. Pores did not form in the viral membrane in the absence of a target membrane. Based on these data, we propose a new model for fusion, in which HA initially forms a proteinaceous pore in the target, but not in the viral membrane, before a lipidic hemifusion intermediate is formed.