Abstract:For harmonic functions v on the disc, it has been known for a long time that non-tangential boundedness a.e.is equivalent to finiteness a.e. of the integral of the area function of v (Lusin area theorem). This result also hold for functions that are non-tangentially bounded only in a measurable subset of the boundary, and has been extended to rank-one hyperbolic spaces, and also to infinite trees (homogeneous or not). No equivalent of the Lusin area theorem is known on higher rank symmetric spaces, with the ex… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.