As an emerging device, memristor has several excellent properties like changeable memristance, nonvolatility, and nanoscale. Based on complementary metal-oxide-semiconductor (CMOS) dual-slope analog-to-digital (A/D) converter, this paper proposes a memristive dual-slope A/D converter. Owing to the usage of memristor, the proposed memristive A/D converter not only has more compact circuit structure and simpler control timing than the CMOS one but also has advantages over the existing memristive conversion circuits in circuit design and application. For the memristive A/D converter, a conversion process consists of two count procedures. By means of controlling the memristance change in the two count procedures, the A/D converter converts an analog signal to the corresponding digital count value. Meanwhile, the conversion result is inferred according to the circuit structure of the A/D converter. Then, combining the conversion process and PSPICE simulation, this paper analyzes the anti-interference performance of the A/D converter. Further, the robustness of the A/D converter is presented, applying the similar analysis methods. The analysis results demonstrate that the proposed A/D converter has good anti-interference and robustness performances.