Based on their evolutionary origin, MADS box transcription factor genes have been divided into two classes, namely, type I and II. The plant-specific type II MIKC MADS box genes have been most intensively studied and shown to be key regulators of developmental processes, such as meristem identity, flowering time, and fruit and seed development. By contrast, very little is known about type I MADS domain transcription factors, and they have not attracted interest for a long time. A number of recent studies have now indicated a key regulatory role for type I MADS box factors in plant reproduction, in particular in specifying female gametophyte, embryo, and endosperm development. These analyses have also suggested that type I MADS box factors are decisive for setting reproductive boundaries between species.
MADS DOMAIN ENCODING GENESMADS box genes are of ancient origin and are found in animals, fungi, and plants. All identified MADS box genes encode a highly conserved N-terminal DNA binding domain 55 to 60 amino acids in length named the MADS domain ( Figure 1; Trö bner et al., 1992). Homology searches in the nonredundant microbial database using a Hidden Markov Model for seed alignment of the MADS domain suggested that the MADS domain originates from the DNA binding subunit A of topoisomerases IIA subunit A (Gramzow et al., 2010).The acronym MADS ) is derived from the initials of MINICHROMOSOME MAINTENANCE1 (MCM1, Saccharomyces cerevisiae; Passmore et al., 1988), AGAMOUS (Arabidopsis thaliana; Yanofsky et al., 1990), DEFI-CIENS (Antirrhinum majus; Sommer et al., 1990), and SERUM RESPONSE FACTOR (SRF, Homo sapiens; Norman et al., 1988). These members of the MADS box gene family play important biological roles; for example, the human SRF coordinates the transcription of the proto-oncogene c-fos (Masutani et al., 1997;Mo et al., 2001), while MCM1 is central to the transcriptional control of cell type-specific genes and the pheromone response in the yeast S. cerevisiae (Shore and Sharrocks, 1995;Mead et al., 2002).Plant MADS box genes were first identified as regulators of floral organ identity and have since been reported to control additional developmental processes, such as the determination of meristem identity of vegetative, inflorescence, and floral meristems, root growth, ovule and female gametophyte development, flowering time, fruit ripening, and dehiscence (Zhang and Forde, 1998;Ng and Yanofsky, 2001;Giovannoni, 2004;Whipple et al., 2004;Liu et al., 2009). Studies using several model species, including Arabidopsis, A. majus, Petunia hybrida, Zea mays, and Oryza sativa, have revealed that many of these functions are conserved among angiosperms (Schwarz-Sommer et al., 2003;Vandenbussche et al., 2003;Kater et al., 2006).
ARABIDOPSIS MADS BOX TYPE I AND TYPE II: AN EVOLUTIONARY OVERVIEWBased on sequence conservation in the MADS domain, these transcription factors can be grouped into two main lineages, named type I (SRF-like) and type II (MEF2-like; Alvarez-Buylla et al., 2000). In animals, type I genes are involv...