Individual data are valuable for assessing the health, welfare and performance of broilers. In particular, data on the first few days of life are needed to study the predictive value of traits recorded early in life for later life performance. However, broilers are generally kept in groups, which hampers individual identification and monitoring of animals. Sensor technologies may aid in identifying and monitoring individual animals. In this study, a passive radio frequency identification (RFID) system was implemented to record broiler activity, in combination with traditional video recordings. The two main objectives were (1) to validate the output of the RFID system by comparing it to the recorded locations on video, and (2) to assess whether the number of antennas visited per unit time could serve as a measure of activity, by comparing it to the distance recorded on video and to the distance moved as recorded using a validated ultra-wideband (UWB) tracking system. The locations recorded by the RFID system exactly matched the video in 62.5% of the cases, and in 99.2% of the cases when allowing for a deviation of one antenna grid cell. There were moderately strong Spearman rank correlations between the distance recorded with the RFID system and the distance recorded from video (rs = 0.82) and between UWB and RFID (rs = 0.70) in approximately one-hour recordings, indicating that the RFID system can adequately track relative individual broiler activity, i.e., the activity level of a broiler in comparison to its group members. As the RFID tags are small and lightweight, the RFID system is well suited for monitoring the individual activity of group-housed broilers throughout life.