Objective: Ultrasound (US) plays an important role in the diagnosis and management of breast diseases; however, effective breast US screening is lacking in rural and remote areas. To alleviate this issue, we prospectively evaluated the clinical availability of 5G-based telerobotic US technology for breast examinations in rural and remote areas. Methods: Between September 2020 and March 2021, 63 patients underwent conventional and telerobotic US examinations in a rural island (Scenario A), while 20 patients underwent telerobotic US examination in a mobile car located in a remote county (Scenario B) in May 2021. The safety, duration, US image quality, consistency, and acceptability of the 5G-based telerobotic US were assessed. Results: In Scenario A, the average duration of the telerobotic US procedure was longer than that of conventional US (10.3 ± 3.3 min vs. 7.6 ± 3.0 min, p = 0.017), but their average imaging scores were similar (4.86 vs. 4.90, p = 0.159). Two cases of gynecomastia, one of lactation mastitis, and one of postoperative breast effusion were diagnosed and 32 nodules were detected using the two US methods. There was good interobserver agreement between the US features and BI-RADS categories of the identical nodules (ICC = 0.795–1.000). In Scenario B, breast nodules were detected in 65% of the patients using telerobotic US. Its average duration was 10.1 ± 2.3 min, and the average imaging score was 4.85. Overall, 90.4% of the patients were willing to choose telerobotic US in the future, and tele-sonologists were satisfied with 85.5% of the examinations. Conclusion: The 5G-based telerobotic US system is feasible for providing effective breast examinations in rural and remote areas.