Purpose To evaluate the feasibility of a 5G-based telerobotic ultrasound (US) system for thyroid examination on a rural island. Methods From September 2020 to March 2021, this prospectively study enrolled a total of 139 patients (average age, 58.6 ± 12.7 years) included 33 males and 106 females, who underwent 5G-based telerobotic thyroid US examination by a teledoctor at Shanghai Tenth People's Hospital and a conventional thyroid US examination at Chongming Second People's Hospital 84 km away. The clinical feasibility of 5G-based telerobotic US for thyroid examination were evaluated in terms of safety, duration, US image quality, diagnostic results, and questionnaire survey. Results 92.8% of patients had no examination-related complaints. The average duration of the 5G-based telerobotic US examination was similar as that of conventional US examination (5.57 ± 2.20 min vs. 5.23 ± 2.1 min, P = 0.164). The image quality of telerobotic US correlated well with that of conventional US (4.63 ± 0.60 vs. 4.65 ± 0.61, P = 0.102). There was no significant difference between two types of US examination methods for the diameter measurement of the thyroid, cervical lymph nodes, and thyroid nodules. Two lymphadenopathies and 20 diffuse thyroid diseases were detected in two types of US methods. 124 thyroid nodules were detected by telerobotic US and 127 thyroid nodules were detected by conventional US. Among them, 122 were the same thyroid nodules. In addition, there were good consistency in the US features (component, echogenicity, shape, and calcification) and ACR TI-RADS category of the same thyroid nodules between telerobotic and conventional US examinations (ICC = 0.788-0.863). 85.6% of patients accepted the telerobotic US, and 87.1% were willing to pay extra fee for the telerobotic US. Conclusion The 5G-based telerobotic US system can be a routine diagnostic tool for thyroid examination for patients on a rural island.
Objective: Ultrasound (US) plays an important role in the diagnosis and management of breast diseases; however, effective breast US screening is lacking in rural and remote areas. To alleviate this issue, we prospectively evaluated the clinical availability of 5G-based telerobotic US technology for breast examinations in rural and remote areas. Methods: Between September 2020 and March 2021, 63 patients underwent conventional and telerobotic US examinations in a rural island (Scenario A), while 20 patients underwent telerobotic US examination in a mobile car located in a remote county (Scenario B) in May 2021. The safety, duration, US image quality, consistency, and acceptability of the 5G-based telerobotic US were assessed. Results: In Scenario A, the average duration of the telerobotic US procedure was longer than that of conventional US (10.3 ± 3.3 min vs. 7.6 ± 3.0 min, p = 0.017), but their average imaging scores were similar (4.86 vs. 4.90, p = 0.159). Two cases of gynecomastia, one of lactation mastitis, and one of postoperative breast effusion were diagnosed and 32 nodules were detected using the two US methods. There was good interobserver agreement between the US features and BI-RADS categories of the identical nodules (ICC = 0.795–1.000). In Scenario B, breast nodules were detected in 65% of the patients using telerobotic US. Its average duration was 10.1 ± 2.3 min, and the average imaging score was 4.85. Overall, 90.4% of the patients were willing to choose telerobotic US in the future, and tele-sonologists were satisfied with 85.5% of the examinations. Conclusion: The 5G-based telerobotic US system is feasible for providing effective breast examinations in rural and remote areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.