2014
DOI: 10.1007/s10044-014-0401-y
|View full text |Cite
|
Sign up to set email alerts
|

An efficient algorithm for large-scale quasi-supervised learning

Abstract: We present a novel formulation for quasisupervised learning that extends the learning paradigm to large datasets. Quasi-supervised learning computes the posterior probabilities of overlapping datasets at each sample and labels those that are highly specific to their respective datasets. The proposed formulation partitions the data into sample groups to compute the dataset posterior probabilities in a smaller computational complexity. In experiments on synthetic as well as real datasets, the proposed algorithm … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 25 publications
0
0
0
Order By: Relevance