Simulated deformations and images can act as the gold standard for evaluating various templatebased image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic interand intra-individual deformations. The paper first describes a statistical approach to capturing interindividual variability of high-deformation fields from a number of examples (training samples). In this approach, Wavelet-Packet Transform (WPT) of the training deformations and their Jacobians, in conjunction with a Markov Random Field (MRF) spatial regularization, are used to capture both coarse and fine characteristics of the training deformations in a statistical fashion. Simulated deformations can then be constructed by randomly sampling the resultant statistical distribution in an unconstrained or a landmark-constrained fashion. The paper also describes a model for generating tissue atrophy or growth in order to simulate intra-individual brain deformations. Several sets of simulated deformation fields and respective images are generated, which can be used in the future for systematic and extensive validation studies of automated atlas-based segmentation and deformable registration methods. The code and simulated data are available through our web site.
We propose a method to simulate atrophy and other similar volumetric change effects on medical images. Given a desired level of atrophy, we find a dense warping deformation that produces the corresponding levels of volumetric loss on the labeled tissue using an energy minimization strategy. Simulated results on a real brain image indicate that the method generates realistic images of tissue loss. The method does not make assumptions regarding the mechanics of tissue deformation, and provides a framework where a pre-specified pattern of atrophy can readily be simulated. Furthermore, it provides exact correspondences between images prior and posterior to the atrophy that can be used to evaluate provisional image registration and atrophy quantification algorithms.
We propose a method for enforcing topology preservation and smoothness onto a given displacement field. We first analyze the conditions for topology preservation on two- and three-dimensional displacement fields over a discrete rectangular grid. We then pose the problem of finding the closest topology preserving displacement field in terms of its complete set of gradients, which we later solve using a cyclic projections framework. Adaptive smoothing of a displacement field is then formulated as an extension of topology preservation, via constraints imposed on the Jacobian of the displacement field. The simulation results indicate that this technique is a fast and reliable method to estimate a topology preserving displacement field from a noisy observation that does not necessarily preserve topology. They also show that the proposed smoothing method can render morphometric analysis methods that are based on displacement field of shape transformations more robust to noise without removing important morphologic characteristics.
In this paper, we present a novel nearest neighbor rule-based implementation of the structural risk minimization principle to address a generic classification problem. We propose a fast reference set thinning algorithm on the training data set similar to a support vector machine (SVM) approach. We then show that the nearest neighbor rule based on the reduced set implements the structural risk minimization principle, in a manner which does not involve selection of a convenient feature space. Simulation results on real data indicate that this method significantly reduces the computational cost of the conventional SVMs, and achieves a nearly comparable test error performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.