Network coding approaches typically consider an unrestricted recoding of coded packets in the relay nodes to increase performance. However, this can expose the system to pollution attacks that cannot be detected during transmission, until the receivers attempt to recover the data. To prevent these attacks while allowing for the benefits of coding in mesh networks, the cache coding protocol was proposed. This protocol only allows recoding at the relays when the relay has received enough coded packets to decode an entire generation of packets. At that point, the relay node recodes and signs the recoded packets with its own private key, allowing the system to detect and minimize the effect of pollution attacks and making the relays accountable for changes on the data. This paper analyzes the delay performance of cache coding to understand the security-performance trade-off of this scheme. We introduce an analytical model for the case of two relays in an erasure channel relying on an absorbing Markov chain and an approximate model to estimate the performance in terms of the number of transmissions before successfully decoding at the receiver. We confirm our analysis using simulation results. We show that cache coding can overcome the security issues of unrestricted recoding with only a moderate decrease in system performance.