Abstract-In the emerging Industrial IoT era, Machine-toMachine (M2M) communication technology is considered as a key underlying technology for building Industrial IoT environments where devices (e.g., sensors, actuators, gateways) are enabled to exchange information with each other in an autonomous way without human intervention. However, most of the existing M2M protocols that can be also used in the Industrial IoT domain provide security mechanisms based on asymmetric cryptography resulting in high computational cost. As a consequence, the resource-constrained IoT devices are not able to support them appropriately and thus, many security issues arise for the Industrial IoT environment. Therefore, lightweight security mechanisms are required for M2M communications in Industrial IoT in order to reach its full potential. As a step towards this direction, in this paper, we propose a lightweight authentication mechanism, based only on hash and XOR operations, for M2M communications in Industrial IoT environment. The proposed mechanism is characterized by low computational cost, communication and storage overhead, while achieving mutual authentication, session key agreement, device's identity confidentiality, and resistance against the following attacks: replay attack, man-in-the-middle attack, impersonation attack, and modification attack.
Internet of medical things (IoMT) is an emerging technology aiming to improve the patient's quality of life by enabling personalized e-health services without limitations on time and location. Nevertheless, IoMT devices (eg, medical sensors) that constitute the key underlying elements of the IoMT edge network are vulnerable to various types of security threats and thus, they pose a significant risk to patient's privacy and safety. Based on that and the fact that the security is a critical factor for the successful integration of IoMT technology into pervasive healthcare systems, there is an urgent need for novel security mechanisms to preserve the security of the IoMT edge network. Toward this direction, the first step is the comprehensive understanding of existing and potential threats to the IoMT edge network environment. Thus, in this article, we provide a categorization of security threats to the edge network environment based on the major security objectives that they target. Moreover, we present a categorization of security
Network coding has shown a considerable improvement in terms of capacity and robustness compared to traditional store-andforward transmission paradigm. However, since the intermediate nodes in network coding-enabled networks have the ability to change the packets en route, network coding-enabled networks are vulnerable to pollution attacks where a small number of polluted messages can corrupt bunches of legitimate messages. Recently, research effort has been put on schemes for protecting the transmitted messages against data pollution attacks. However, most of them cannot resist tag pollution attacks. This paper presents a new homomorphic MAC-based scheme, called Dual-Homomorphic MAC (Dual-HMAC), for network coding-enabled wireless sensor networks. The proposed scheme makes use of two types of tags (i.e., MACs and D-MACs) to provide resistance against data pollution attacks and partially tag pollution attacks. Furthermore, our proposed scheme presents low communication overhead and low computational complexity compared to other existing schemes.
Network coding (NC)-enabled mobile small cells are observed as a promising technology for fifth-generation (5G) networks that can cover the urban landscape by being set up ondemand at any place and at any time on any device. Nevertheless, despite the significant benefits that this technology brings to the 5G of mobile networks, major security issues arise due to the fact that NC-enabled mobile small cells are susceptible to pollution attacks; a severe security threat exploiting the inherent vulnerabilities of NC. Therefore, intrusion detection and prevention mechanisms to detect and mitigate pollution attacks are of utmost importance so that NC-enabled mobile small cells can reach their full potential. Thus, in this article, we propose for the first time, to the best of our knowledge, a novel intrusion detection and prevention scheme (IDPS) for NC-enabled mobile small cells. The proposed scheme is based on a null space-based homomorphic message authentication code (MAC) scheme that allows detection of pollution attacks and takes proper risk mitigation actions when an intrusive incident is detected. The proposed scheme has been implemented in Kodo and its performance has been evaluated in terms of computational overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.