2022
DOI: 10.3390/math10142539
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Method for Breast Mass Classification Using Pre-Trained Deep Convolutional Networks

Abstract: Masses are the early indicators of breast cancer, and distinguishing between benign and malignant masses is a challenging problem. Many machine learning- and deep learning-based methods have been proposed to distinguish benign masses from malignant ones on mammograms. However, their performance is not satisfactory. Though deep learning has been shown to be effective in a variety of applications, it is challenging to apply it for mass classification since it requires a large dataset for training and the number … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 22 publications
(47 reference statements)
0
2
0
Order By: Relevance
“…This technique improves the information about breast mass. (Ull et al, 2023;Bandaru et al, 2022a;Duong et al, 2023;Kahnouei et al, 2022;P and V, 2022;Li et al, 2019aLi et al, , 2021cMahmood et al, 2022;Wang et al, 2022;Yao et al, 2022), (Tsochatzidis et al, 2021;Ahmed et al, 2020;Fathy and Ghoneim, 2019;Frazer et al, 2021;Sannasi Chakravarthy and Rajaguru, 2021;Chakravarthy and Rajaguru, 2022;Al-Antari et al, 2020;Al-Mansour et al, 2022;Alruwaili and Gouda, 2022;Altameem et al, 2022;Altaf, 2021;Cao et al, 2020;Al-Tam et al, 2022;Bandaru et al, 2022b;López-Cabrera et al, 2020;Saber et al, 2021;Chougrad et al, 2018;Falconi et al, 2020;Jafarzadeh Ghoushchi et al, 2021;Hanis et al, 2023;Lin et al, 2022;Mokni and Haoues, 2022;Mudeng et al, 2022;Khan and Masala, 2023;Oza et al, 2023;Prodan et al, 2023;Ragab et al, 2021;Yu et al, 2023b;Gerbasi et al, 2023;Shanker and Vadivel, 2022;Zhang and Wang, 2019;Adedigba et al, 2022;…”
Section: Techniques References Descriptionmentioning
confidence: 99%
“…This technique improves the information about breast mass. (Ull et al, 2023;Bandaru et al, 2022a;Duong et al, 2023;Kahnouei et al, 2022;P and V, 2022;Li et al, 2019aLi et al, , 2021cMahmood et al, 2022;Wang et al, 2022;Yao et al, 2022), (Tsochatzidis et al, 2021;Ahmed et al, 2020;Fathy and Ghoneim, 2019;Frazer et al, 2021;Sannasi Chakravarthy and Rajaguru, 2021;Chakravarthy and Rajaguru, 2022;Al-Antari et al, 2020;Al-Mansour et al, 2022;Alruwaili and Gouda, 2022;Altameem et al, 2022;Altaf, 2021;Cao et al, 2020;Al-Tam et al, 2022;Bandaru et al, 2022b;López-Cabrera et al, 2020;Saber et al, 2021;Chougrad et al, 2018;Falconi et al, 2020;Jafarzadeh Ghoushchi et al, 2021;Hanis et al, 2023;Lin et al, 2022;Mokni and Haoues, 2022;Mudeng et al, 2022;Khan and Masala, 2023;Oza et al, 2023;Prodan et al, 2023;Ragab et al, 2021;Yu et al, 2023b;Gerbasi et al, 2023;Shanker and Vadivel, 2022;Zhang and Wang, 2019;Adedigba et al, 2022;…”
Section: Techniques References Descriptionmentioning
confidence: 99%
“…Mass detection and classification have been performed by Momminet-V2 using multi-view mammograms [26]. The computational cost of deep learning model training is becoming a concern, and recently breast cancer mass pathology was classified by implementing pre-trained deep neural networks without transfer learning [27]. NASNet is a high performing CNN for image classification on the ImageNet [28], [29].…”
Section: Introductionmentioning
confidence: 99%
“…The use of automated CAD methods with mammograms increases the accuracy rate of identification; the operational expedient accelerates the diagnosing process and retains the medical appliances. Additionally, the breast mass shows unique symptoms in BC detection [4]. The marginal data of the breast mass display the growth patterns and biological features.…”
Section: Introductionmentioning
confidence: 99%