Masses are the early indicators of breast cancer, and distinguishing between benign and malignant masses is a challenging problem. Many machine learning- and deep learning-based methods have been proposed to distinguish benign masses from malignant ones on mammograms. However, their performance is not satisfactory. Though deep learning has been shown to be effective in a variety of applications, it is challenging to apply it for mass classification since it requires a large dataset for training and the number of available annotated mammograms is limited. A common approach to overcome this issue is to employ a pre-trained model and fine-tune it on mammograms. Though this works well, it still involves fine-tuning a huge number of learnable parameters with a small number of annotated mammograms. To tackle the small set problem in the training or fine-tuning of CNN models, we introduce a new method, which uses a pre-trained CNN without any modifications as an end-to-end model for mass classification, without fine-tuning the learnable parameters. The training phase only identifies the neurons in the classification layer, which yield higher activation for each class, and later on uses the activation of these neurons to classify an unknown mass ROI. We evaluated the proposed approach using different CNN models on the public domain benchmark datasets, such as DDSM and INbreast. The results show that it outperforms the state-of-the-art deep learning-based methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.