Fractional factorial designs (FFD's) are no doubt the most widely used designs in the experimental investigations due to their efficient use of experimental runs to study many factors simultaneously. One consequence of using FFD's is the aliasing of factorial effects. Follow-up experiments may be needed to break the confounding. A simple strategy is to add a foldover of the initial design, the new fraction is called a foldover design. Combining a foldover design with the original design converts a design of resolution r into a combined design of resolution r +1. In this paper, we take the centered L 2 -discrepancy (CD) as the optimality measure to construct the optimal combined design and take asymmetrical factorials with mixed two and three levels, which are most commonly used in practice, as the original designs. New and efficient analytical expressions based on the row distance of the CD for combined designs are obtained. Based on these new formulations, we present new and efficient lower bounds of the CD. Using the new formulations and lower bounds as the benchmarks, we may implement a new algorithm for constructing optimal mixed-level combined designs. By this search heuristic, we may obtain mixed-level combined designs with low discrepancy.Keywords Centered L 2 -discrepancy · Foldover plan · Foldover design · Combined design · Optimal combined design B A. M. Elsawah