2019
DOI: 10.3390/app9224857
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Parallel Algorithm for Polygons Overlay Analysis

Abstract: Map overlay analysis is essential for geospatial analytics. Large scale spatial data pressing poses challenges for geospatial map overlay analytics. In this study, we propose an efficient parallel algorithm for polygons overlay analysis, including active-slave spatial index decomposition for intersection, multi-strategy Hilbert ordering decomposition, and parallel spatial union algorithm. Multi-strategy based spatial data decomposition mechanism is implemented, including parallel spatial data index, the Hilber… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 32 publications
0
5
0
1
Order By: Relevance
“…Ketersediaan lahan ini dilakukan melalui analisis spasial tumpang tindih (overlay) terhadap parameter yang digunakan (poligon). Analisis seperti ini banyak digunakan dalam berbagai aplikasi geospasial (Zhou et al, 2019). Parameter ketersediaan lahan untuk perencanaan pengembangan kawasan perkebunan kopi arabika mempertimbangkan beberapa kriteria sebagai berikut:…”
Section: A Analisis Ketersediaan Lahanunclassified
“…Ketersediaan lahan ini dilakukan melalui analisis spasial tumpang tindih (overlay) terhadap parameter yang digunakan (poligon). Analisis seperti ini banyak digunakan dalam berbagai aplikasi geospasial (Zhou et al, 2019). Parameter ketersediaan lahan untuk perencanaan pengembangan kawasan perkebunan kopi arabika mempertimbangkan beberapa kriteria sebagai berikut:…”
Section: A Analisis Ketersediaan Lahanunclassified
“…The increasing potential usage of GPU hardware has demonstrated the GPU's capacity to give faster applications and excellent task-based parallelism that provides a significant increase in processing performance. This potential has been used in a variety of fields, including cryptocurrencies such as Bitcoin to mine digital money (Alkaeed et al, 2020;Iyer & Pawar, 2018), DNA analysis and modelling (Ahmed et al, 2020), large-scale simulations (Saprykin et al, 2019;Vu & Tan, 2019), large-scale tasks with combination of machine learning (Abadi et al, 2016;Nie et al, 2018) and of course, big geodata (Breunig et al, 2020;Zhou et al, 2019).…”
Section: Related Work On Gpu Developments For Big Geodatamentioning
confidence: 99%
“…Previous study on processing big geodata, has proposed to utilise parallel processing for high efficiency large-scale geospatial processing (Zhou et al, 2019) and data memory management (Doraiswamy & Freire, 2020). Armstrong (2020) suggested by employing parallel processing to handle geographical information big datasets, the potential to stimulate the computing standard in spatial problem solving, analysis, and modelling will be clear developmental path in geospatial research.…”
Section: Concept Of Parallel Architecturementioning
confidence: 99%
“…The topological relationship operation is mainly used to determine the spatial position relationship between grids. The topological relationship between entities can be described by a nine-intersection model [22,23]. In the nine-intersection model for GeoSOT, we define A 0 as the grids with a distance of 1 in the Voronoi diagram (Figure 11).…”
Section: Topological Relationship Calculationmentioning
confidence: 99%