Molecular Dynamics (MD) simulations of proteins implicitly contain the information connecting the atomistic molecular structure and proteins' biologically relevant motion, where large-scale fluctuations are deemed to guide folding and function. In the complex multiscale processes described by MD trajectories it is difficult to identify, separate, and study those large-scale fluctuations. This problem can be formulated as the need to identify a small number of collective variables that guide the slow kinetic processes. The most promising method among the ones used to study the slow, leading processes in proteins' dynamics, is the time-structure based or time-lagged independent component analysis, or tICA, which identifies the dominant components in a noisy signal. Recently, we developed an anisotropic Langevin approach for the dynamics of proteins, called the anisotropic Langevin Equation for Protein Dynamics or LE4PD-XYZ. This approach partitions the protein's MD dynamics into mostly uncorrelated, wavelength-dependent, diffusive modes. It associates to each mode a free-energy map, where one measures the spatial extension and the time evolution of the mode-dependent, slow dynamical fluctuations. Here, we compare the tICA modes' predictions with the collective LE4PD-XYZ modes. We observe that the two methods consistently identify the nature and extension of the slowest fluctuation processes. The tICA separates the leading processes in a smaller number of slow modes than the LE4PD does. The LE4PD provides time-dependent information at short times, and a formal connection to the physics of the kinetic processes that are missing in the pure statistical analysis of tICA.