Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract The Kluyveromyces lactis homologue of the Saecharomyces cerevisiae HAP3 gene was isolated by functional complementation of the respiratorydeficient phenotype of the S. cerevisiae hap3::HIS4 strain SHY40. The K1HAP3 gene encodes a protein of 205 amino acids, of which the central B-domain of 90 residues is highly homologous to HAP3 counterparts of S. cerevisiae and higher eukaryotes. The protein contains a novel 4-cysteine zinc-finger motif and we propose by analogy that all other homologous HAP3 proteins contain the same motif, with the position containing the third cysteine being occupied by a serine residue. In contrast to the situation in S. cerevisiae, disruption of the K1HAP3 gene in K. lactis does not result in a respiratory-deficient phenotype and the growth of the null strain is indistinguishable from wild type. There is also no effect on the expression of the carbon source-regulated KICYC1 gene, suggesting either a different role for the HAP2/3/4 complex, or the existence of a different mechanism of carbon source regulation. Sequence verification of the S. cerevisiae HAP3 locus reveals that, just as in K. lactis, a long open reading frame (ORF) is present upstream of the HAP3 gene. These highly homologous ORFs are predicted to have at least eight membrane-spanning fragments, but do not show significant homology to any known sequence present in databases. The ScORFX gene is transcribed in the opposite direction to ScHAP3, but, in contrast to an earlier report by Hahn et al. (1988), the transcripts of the two genes do not overlap. The model proposed by these authors, in which the ScHAP3 gene is regulated by an anti-sense non-coding mRNA, is therefore not correct.