Nowadays, a worldwide database containing the historical and reliable data concerning the water surface speed of rivers is not available and would be highly desirable. In order to meet this requirement, the present work is aimed at the design of an estimation procedure for water flow velocity by means of synthetic aperture radar (SAR) data. The main technical aspect of the proposed procedure is that an along-track geometry is synthesized using a single antenna and a single image. This is achieved by exploiting a multichromatic analysis in the Doppler domain. The application of this approach allows us to obtain along-track interferometry equivalent virtual baselines much lower than the equivalent baseline corresponding to the decorrelation time of raw data preserving data coherence. The performance analysis, conducted on live airborne full-polarimetric SAR data, highlights the effectiveness of the proposed approach in providing reliable river surface velocity estimates without the need of multiple passes on the observed scene.Index Terms-Along-track interferometry (ATI), doppler subapertures, multichromatic analysis (MCA), radar, river surface doppler velocity estimation, synthetic aperture radar (SAR).