A novel, simple, rapid microfluidic array using bioelectronically driven cytochrome P450 enzyme catalysis for reactive metabolite screening is reported for the first time. The device incorporates an 8-electrode screen printed carbon array coated with thin films of DNA, [Ru(bpy)2(PVP)10](ClO4) {RuPVP}, and rat liver microsomes (RLM) as enzyme sources. Catalysis features electron donation to cyt P450 reductase in the RLMs and subsequent cyt P450 reduction while flowing an oxygenated substrate solution past sensor electrodes. Metabolites react with DNA in the film if they are able, and damaged DNA is detected by catalytic square wave voltammetry (SWV) utilizing the RuPVP polymer. The microfluidic device was tested for a set of common pollutants known to form DNA-reactive metabolites. Logarithmic turnover rates based on SWV responses gave excellent correlation with the rodent liver TD50 toxicity metric, supporting the utility of the device for toxicity screening. The microfluidic array gave much better S/N and reproducibility than single electrode sensors based on similar principles.