PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a phosphatidylinositol triphosphate 3-phosphatase that counteracts phosphoinositide 3-kinases and has subsequently been implied as a valuable drug target for diabetes and cancer. Recently, we demonstrated that VO-OHpic is an extremely potent inhibitor of PTEN with nanomolar affinity in vitro and in vivo. Given the importance of this inhibitor for future drug design and development, its mode of action needed to be elucidated. It was discovered that inhibition of recombinant PTEN by VO-OHpic is fully reversible. Both K(m) and V(max) are affected by VO-OHpic, demonstrating a noncompetitive inhibition of PTEN. The inhibition constants K(ic) and K(iu) were determined to be 27 ± 6 and 45 ± 11 nM, respectively. Using the artificial phosphatase substrate 3-O-methylfluorescein phosphate (OMFP) or the physiological substrate phosphatidylinositol 3,4,5-triphosphate (PIP(3)) comparable parameters were obtained suggesting that OMFP is a suitable substrate for PTEN inhibition studies and PTEN drug screening.
Oriented immobilization of human cytochrome P450 2E1 and its catalytic activity by direct electrochemistry was achieved by engineering two multisite mutants of P450 2E1: MUT261 (C268S-C480S-C488S) and MUT268 (C261S-C480S-C488S). Here, all the exposed cysteines are mutated into serines, with the exception of one (C261 for MUT261 and C268 for MUT268) that is able to link covalently to a modified gold electrode. The P450 2E1 wild type, as well as the two mutants, were immobilized onto gold electrodes using dithio-bismaleimidoethane as a self-assembled monolayer. The catalytic activity of the wild type and of the two cysteine mutants were determined using p-nitrophenol as a substrate, and the amount of the electrocatalysis product (p-nitrocatechol) was determined spectrophotometrically. The amounts of product formed by the mutants on the electrodes were 2-fold to 3-fold higher than those of the wild type. Control experiments performed in solution using the cytochrome P450 reductase as the electron donor show no significant differences in the level of product formed. The higher level of product formation of the two mutants on the electrode is ascribed to the controlled immobilization on the gold surface: the heme electron transfer proximal side is linked to the electrode, while the substrate binding distal side is exposed to the bulk solution. This is the first evidence that the control over the orientation of the human cytochromes P450 is key to maximize the electrocatalytic efficiency of these enzymes.
Inositol phospholipids have emerged as important key players in a wide variety of cellular functions. Among the seven existing inositol phospholipids, phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P 2 ) has attracted much attention in recent years due to its important role in numerous cellular signaling events and regulations, which in turn impact several human diseases. This particular lipid is recognized in the cell by specific lipid binding domains, such as the Pleckstrin-homology (PH) domain, which is also employed as a tool to monitor this important lipid. Here, we describe the synthesis and biological characterization of a small molecule that mimics the PH domain as judged by its ability to bind specifically to only PI(4,5)P 2 and effectively compete with the PH domain in vitro and in a cellular environment.The binding constant of this small molecule PH domain mimetic (PHDM) was determined to be 17.6 ± 10.1 µM, similar in potency to the PH domain. Using NIH 3T3 mouse fibroblast cells we demonstrated that this compound is cell permeable and able to modulate PI(4,5)P 2 -dependent effects in a cellular environment such as the endocytosis of the transferrin receptor, loss of mitochondria as well as stress fiber formation. This highly PI(4,5)P 2 -specific chemical mimetic of a PH domain, is not only a powerful research tool, but might also be a lead compound in future drug developments targeting PI(4,5)P 2 -dependent diseases such as Lowe syndrome.
This paper is the first report of a P450-electrode in a microfluidic format. A 30 μL microfluidic cell was made in poly(methyl methacrylate) containing the inlet, outlet, and reaction chamber with two electrode strips, one of which contains the human cytochrome P450 3A4 covalently bound to gold via a 6-hexanethiol and 7-mercaptoheptanoic acid (1:1) self-assembled monolayer. The electrochemical response of the P450-electrode in the microfluidic cell was tested using four drugs that are known substrates of P450 3A4: quinidine, nifedipine, alosetron and ondansetron. Titration experiments allowed the electrochemical measurements of K(M) for the four drugs, with values of 2.9, 29.1, 113.4, and 114.1 mM, respectively. The K(M) values are found to be in good agreement and correctly ranked with respect to the published literature on human liver microsomes and baculosomes: [ondansetron ≈ alosetron > nifedipine > quinidine]. The results presented in this paper represent a step forward for a rapid evaluation of the interaction of P450 and drug, requiring small volumes of new chemical entities to be tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.