Static and time-dependent density functional calculations, geometrically optimized and including all electrons, are described for silicon nanocrystals as large as Si(87)H(76), which contains 163 atoms. We explore and predict the effect that different sp(3) passivation schemes-F or H termination, thin oxide shell, or alkane termination-have on the HOMO and LUMO, on the optical spectra, and on electron transfer properties. Electronegativity comparisons are a useful guide in understanding the observed deviation from the simple quantum size effect model. Nanocrystals containing Al or P impurity atoms, either on the surface or in the interior, are explored to understand electrical doping in strongly quantum-confined nanocrystals. Surface dangling bonds are found to participate in internal charge transfer with P atom dopant electrons.