Image processing remains a hot research topic among research communities due to its applicability in several areas. An important application of image processing is the automatic image captioning technique, which intends to generate a proper description of an image in a natural language automated. Image captioning is a recently developed hot research topic, and it started to receive significant attention in the field of computer vision and natural language processing (NLP). Since image captioning is considered a challenging task, the recently developed deep learning (DL) models have attained significant performance with increased complexity and computational cost. Keeping these issues in mind, in this paper, a novel hyperparameter tuned DL for automated image captioning (HPTDL-AIC) technique is proposed. The HPTDL-AIC technique encompasses two major parts, namely encoder and decoder. The encoder part utilizes Faster SqueezNet with the RMSProp model to generate an effective depiction of the input image via insertion into a predefined length vector. At the same time, the decoder unit employs a bird swarm algorithm (BSA) with long short-term memory (LSTM) model to concentrate on the generation of description sentences. The design of RMSProp and BSA for the hyperparameter tuning process of the Faster SqueezeNet and LSTM models for image captioning shows the novelty of the work, which helps to accomplish enhanced image captioning performance. The experimental validation of the HPTDL-AIC technique is carried out against two benchmark datasets, and the extensive comparative study pointed out the improved performance of the HPTDL-AIC technique over recent approaches.