Fast development in hardware miniaturization and massive production of sensors make them cost efficient and vastly available to be used in various applications in our daily life more specially in environment monitoring applications. However, energy consumption is still one of the barriers slowing down the development of several applications. Slow development in battery technology, makes energy harvesting (EH) as a prime candidate to eliminate the sensor’s energy barrier. EH sensors can be the solution to enabling future applications that would be extremely costly using conventional battery-powered sensors. In this paper, we analyze the performance improvement and evaluation of EH sensors in various situations. A network model is developed to allow us to examine different scenarios. We borrow a clustering concept, as a proven method to improve energy efficiency in conventional sensor network and brought it to EH sensor networks to study its effect on the performance of the network in different scenarios. Moreover, a dynamic and distributed transmission power management for sensors is proposed and evaluated in both networks, with and without clustering, to study the effect of power balancing on the network end-to-end performance. The simulation results indicate that, by using clustering and transmission power adjustment, the power consumption can be distributed in the network more efficiently, which result in improving the network performance in terms of a packet delivery ratio by 20%, 10% higher network lifetime by having more alive nodes and also achieving lower delay by reducing the hop-count.