Software defect prediction (SDP) plays a vital role in enhancing the quality of software projects and reducing maintenance-based risks through the ability to detect defective software components. SDP refers to using historical defect data to construct a relationship between software metrics and defects via diverse methodologies. Several prediction models, such as machine learning (ML) and deep learning (DL), have been developed and adopted to recognize software module defects, and many methodologies and frameworks have been presented. Class imbalance is one of the most challenging problems these models face in binary classification. However, When the distribution of classes is imbalanced, the accuracy may be high, but the models cannot recognize data instances in the minority class, leading to weak classifications. So far, little research has been done in the previous studies that address the problem of class imbalance in SDP. In this study, the data sampling method is introduced to address the class imbalance problem and improve the performance of ML models in SDP. The proposed approach is based on a convolutional neural network (CNN) and gated recurrent unit (GRU) combined with a synthetic minority oversampling technique plus the Tomek link (SMOTE Tomek) to predict software defects. To establish the efficiency of the proposed models, the experiments have been conducted on benchmark datasets obtained from the PROMISE repository. The experimental results have been compared and evaluated in terms of accuracy, precision, recall, F-measure, Matthew’s correlation coefficient (MCC), the area under the ROC curve (AUC), the area under the precision-recall curve (AUCPR), and mean square error (MSE). The experimental results showed that the proposed models predict the software defects more effectively on the balanced datasets than the original datasets, with an improvement of up to 19% for the CNN model and 24% for the GRU model in terms of AUC. We compared our proposed approach with existing SDP approaches based on several standard performance measures. The comparison results demonstrated that the proposed approach significantly outperforms existing state-of-the-art SDP approaches on most datasets.