Effective accident management acts as a vital part of emergency and traffic control systems. In such systems, accident data can be collected from different sources (unmanned aerial vehicles, surveillance cameras, on-site people, etc.) and images are considered a major source. Accident site photos and measurements are the most important evidence. Attackers will steal data and breach personal privacy, causing untold costs. The massive number of images commonly employed poses a significant challenge to privacy preservation, and image encryption can be used to accomplish cloud storage and secure image transmission. Automated severity estimation using deep-learning (DL) models becomes essential for effective accident management. Therefore, this article presents a novel Privacy Preserving Image Encryption with Optimal Deep-Learning-based Accident Severity Classification (PPIE-ODLASC) method. The primary objective of the PPIE-ODLASC algorithm is to securely transmit the accident images and classify accident severity into different levels. In the presented PPIE-ODLASC technique, two major processes are involved, namely encryption and severity classification (i.e., high, medium, low, and normal). For accident image encryption, the multi-key homomorphic encryption (MKHE) technique with lion swarm optimization (LSO)-based optimal key generation procedure is involved. In addition, the PPIE-ODLASC approach involves YOLO-v5 object detector to identify the region of interest (ROI) in the accident images. Moreover, the accident severity classification module encompasses Xception feature extractor, bidirectional gated recurrent unit (BiGRU) classification, and Bayesian optimization (BO)-based hyperparameter tuning. The experimental validation of the proposed PPIE-ODLASC algorithm is tested utilizing accident images and the outcomes are examined in terms of many measures. The comparative examination revealed that the PPIE-ODLASC technique showed an enhanced performance of 57.68 dB over other existing models.
Internet usage has increased social media over the past few years, significantly impacting public opinion on online social networks. Nowadays, these websites are considered the most appropriate place to express feelings and opinions. The popular social media site Twitter offers valuable insight into people's thoughts. Throughout the conflict between Russia and Ukraine, people from all over the world have expressed their opinions. In this study, "machine-learning" and "deep-learning" techniques are used to understand people's emotions and their views about this war are revealed. This study unveils a novel deeplearning approach that merges the best features of the sequence and transformer models while fixing their respective flaws. The model combines Roberta with ABSA (Aspect based sentiment analysis) and Long Short-Term Memory for sentiment analysis. A large dataset of geographically tagged tweets related to the Ukraine-Russia war was collected from Twitter. We analyzed this dataset using the Roberta-based sentiment model. In contrast, the Long Short-Term Memory model can effectively capture longdistance contextual semantics. The Robustly optimized BERT with ABSA approach maps words into a compact, meaningful word embedding space. The accuracy of the suggested hybrid model is 94.7%, which is higher than the accuracy of the stateof-the-art techniques.
The hyperspectral data contains hundreds of narrows bands representing the same scene on earth, with each pixel has a continuous reflectance spectrum. The first attempts to analysehyperspectral images were based on techniques that were developed for multispectral images by randomly selecting few spectral channels, usually less than seven. This random selection of bands degrades the performance of segmentation algorithm on hyperspectraldatain terms of accuracies. In this paper, a new framework is designed for the analysis of hyperspectral image by taking the information from all the data channels with dimensionality reduction method using subset selection and hierarchical clustering. A methodology based on subset construction is used for selecting k informative bands from d bands dataset. In this selection, similarity metrics such as Average Pixel Intensity [API], Histogram Similarity [HS], Mutual Information [MI] and Correlation Similarity [CS] are used to create k distinct subsets and from each subset, a single band is selected. The informative bands which are selected are merged into a single image using hierarchical fusion technique. After getting fused image, Hierarchical clustering algorithm is used for segmentation of image. The qualitative and quantitative analysis shows that CS similarity metric in dimensionality reduction algorithm gets high quality segmented image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.