Fisheye images with a far larger Field of View (FOV) have severe radial distortion, with the result that the associated image feature matching process cannot achieve the best performance if the traditional feature descriptors are used. To address this challenge, this paper reports a novel distorted Binary Robust Independent Elementary Feature (BRIEF) descriptor for fisheye images based on a spherical perspective model. Firstly, the 3D gray centroid of feature points is designed, and the position and direction of the feature points on the spherical image are described by a constructed feature point attitude matrix. Then, based on the attitude matrix of feature points, the coordinate mapping relationship between the BRIEF descriptor template and the fisheye image is established to realize the computation associated with the distorted BRIEF descriptor. Four experiments are provided to test and verify the invariance and matching performance of the proposed descriptor for a fisheye image. The experimental results show that the proposed descriptor works well for distortion invariance and can significantly improve the matching performance in fisheye images.