To achieve dexterous and stable micro/nanomanipulation, a large grasping stroke, compact design, and parallel grasping are required for microgrippers; thus, a single-stage compliant orthogonal displacement amplifier (CODA) with a single input force would be an ideal transmission mechanism. However, the existing small-deflection-based design schemes cannot adapt to large deflections or shearing effect, thereby affecting the orthogonal movement transformation accuracy. This study proposed, analyzed, and experimentally investigated a nonlinear design scheme for a single-stage CODA with a single input force. First, the nonlinear design principle is described qualitatively. By combining closed-form analytical modelling, finite element analysis, and numerical fitting, the nonlinear extent of a pre-set variable cross-sectional beam in the CODA is formulated. By utilizing the beam constraint model and small-deflection-based modelling, the nonlinear extent of the undetermined uniform straight beam in the CODA is derived. Based on the design principle and nonlinear models, a nonlinear design scheme is proposed quantitatively. Finite element simulations and experimental tests are conducted to verify the proposed scheme, and the limitations of our previous study are revealed.