Spectral K-edge subtraction (SKES) is an imaging technique that takes advantage of the sharp rise in the mass attenuation coefficient of specific elements within an object at their K-edge to produce separate and quantifiable distributions of each element. In this paper, a high-sensitivity and wide bandwidth SKES imaging system for computed tomography applications on biological samples is presented. X-ray images are acquired using a wide and continuous energy spectrum that encompasses the absorption edges of the target materials. System characterization shows that high energy resolution (approximately 3×10−3) and unprecedented large energy bandwidth (around 15 %) are achieved over a field-of-view of several centimeters. Imaging results obtained on contrast elements relevant for biomedical applications, namely silver, iodine, xenon, and barium, demonstrate the system sensitivity to concentrations down to 0.5 mg/mL. The achievement of a large energy bandwidth allowed the simultaneous imaging of the K-edges of iodine, xenon, and barium and provided an accurate concentration estimation and distinction of co-localized contrast elements, leading the way for future simultaneous cardiovascular (iodine), pulmonary (xenon), and gastrointestinal/inflammatory (barium) imaging applications.