The integration of Internet of Things (IoT) technology into electronic health (eHealth) applications has revolutionized the healthcare landscape, enabling real‐time patient monitoring, personalized care, and improved patient outcomes. However, this convergence of IoT and healthcare also introduces critical security and privacy challenges, needing careful consideration. This survey comprehensively explores the multifaceted realm of security and privacy issues in IoT‐based eHealth applications. First, we taxonomize the diverse security threats that arise due to the interconnected nature of IoT medical devices. Additionally, we highlight privacy concerns stemming from the collection and sharing of personal health information, while reconciling them with the need for accessible and collaborative healthcare ecosystems. Second, we synthesize functional, ethical, and regulatory perspectives to pick up the major requirements needed in the context of eHealth data during their whole lifecycle, from creation to destruction. Third, we identify emerging research strategies employed to address security and privacy concerns, such as cloud‐based solutions, decentralized technologies such as blockchain technology and InterPlanetary File System (IPFS), cryptographic approaches, fine‐grained access control strategies, and so forth. Additionally, we examine the impact of these approaches on computational efficiency, latency, and energy consumption, critically evaluating their suitability in the healthcare context. Building upon this comprehensive assessment, we outline potential future research directions aimed at advancing security and privacy measures in IoT‐based eHealth applications.