2020
DOI: 10.3390/en13061438
|View full text |Cite
|
Sign up to set email alerts
|

An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting

Abstract: As the world is aware, the trend of generating energy sources has been changing from conventional fossil fuels to sustainable energy. In order to reduce greenhouse gas emissions, the ratio of renewable energy sources should be increased, and solar and wind power, typically, are driving this energy change. However, renewable energy sources highly depend on weather conditions and have intermittent generation characteristics, thus embedding uncertainty and variability. As a result, it can cause variability and un… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
11
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 37 publications
(15 citation statements)
references
References 31 publications
0
11
0
2
Order By: Relevance
“…Y. Tounsi, L. Hassouni, and H. Anoun have introduced a new model CSMAS to predict problems in data mining of credit scoring domain using state-of-the-art gradient boosting methods (XGBoost, CatBoost, and LightGBM) [ 25 ]. Sunghyeon Choi forecasted solar energy output by employing RF, XGBoost, and LightGBM models [ 26 ]. Moreover, J.Cordeiro, O. Postolache, and J. Ferreira used the XGBoost model and the LightGBM model to predict the height of children [ 27 ].…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Y. Tounsi, L. Hassouni, and H. Anoun have introduced a new model CSMAS to predict problems in data mining of credit scoring domain using state-of-the-art gradient boosting methods (XGBoost, CatBoost, and LightGBM) [ 25 ]. Sunghyeon Choi forecasted solar energy output by employing RF, XGBoost, and LightGBM models [ 26 ]. Moreover, J.Cordeiro, O. Postolache, and J. Ferreira used the XGBoost model and the LightGBM model to predict the height of children [ 27 ].…”
Section: Related Workmentioning
confidence: 99%
“… Reference Year Base model Time series prediction Data set [ 28 ] 2021 SVM, LR, Multi-layer perceptron, RF Covid-19 pandemic cumulative case forecasting Data of COVID-19 between January 20, 2020, and September 18, 2020, for the USA, Germany, and global was obtained from the World Health Organization website. [ 17 ] 2020 LR, SVM, ANN, RF, XGBoost, LightGBM Prediction of peak demand days of cardiovascular disease(CVD) admissions Health Information Center of Sichuan Province, China: the daily number of admissions of CVD patients in hospital Chengdu Meteorological Monitoring Database: Meteorological data China National Environmental Monitoring Cente: air pollutants data [ 25 ] 2020 XGBoost, CatBoost, LightGBM Prediction of problems in data mining of credit scoring domain Home Credit Default Risk from Kaggle Challenge [ 26 ] 2020 RF, XGBoost, LightGBM Photovoltaic Forecasting Data of a Photovoltaic plant in South Korea [ 18 ] 2020 LightGBM Cryptocurrency price trend Daily trading data from https://www.investing.com/ [ 29 ] 2020 XGBoost, ARIMA Hemorrhagic fever with renal syndrome Monthly hemorrhagic fever with renal syndrome incidence data from 2004 to 2018 from the official website of the National Health Commission of the People's Republic of China [ 27 ] …”
Section: Related Workmentioning
confidence: 99%
“…When basic learners of the same type are used, the approach is referred as homogeneous ensemble model and when the basic learners are built of different algorithms, it is called heterogeneous ensemble method. • Bagging (BAG) (Choi and Hur, 2020) regressors help to improve model performance by training in parallel each basic learner on a random subset of the training dataset and averaging the resulting single forecasts. • Boosting (XGB [for Extreme Gradient Boosting]) is like bagging but runs sequentially.…”
Section: Approaches Based On Ensemble Machine Learningmentioning
confidence: 99%
“…Çeşitli çalışmaların sonuçları, geçmiş veri özelliklerini kullanan topluluk öğrenme tabanlı modelin, varsayılan özelliklere sahip tek bir model kullanarak gerçekleştirilenden daha doğru performans sağladığını göstermiştir (Choi & Hur, 2020;Li, Han, Wang, & Zhao, 2018). Topluluk yöntemleri kullanılarak CO2 emisyonunun değerinin tahmin edilmesi konusunda çeşitli araştırmalar yapılmıştır (Choi & Hur, 2020;Parker, 2010). Khan & Awasthi (2020), çalışmalarında Kanada'daki yolcu ve yük karayolu taşımacılığından kaynaklanan sera gazı emisyonlarını tahmin etmek için veri madenciliği ve denetimli makine öğrenme algoritmalarına (regresyon ve sınıflandırma) dayalı yeni modeller önermişlerdir.…”
Section: Topluluk öğRenme Yöntemleri Tabanlı Literatür çAlışmalarıunclassified
“…Topluluk öğrenmesinin amacı, tek bir sınıflandırıcı üzerindeki öngörüyü genelleştirerek doğruluğu arttırmada çeşitli temel sınıflandırıcıların kararlarını veya tahminlerini birleştirmektir (Chen, Zahiri, & Zhang, 2017). Çeşitli çalışmaların sonuçları, geçmiş veri özelliklerini kullanan topluluk öğrenme tabanlı modelin, varsayılan özelliklere sahip tek bir model kullanarak gerçekleştirilenden daha doğru performans sağladığını göstermiştir (Choi & Hur, 2020;Li, Han, Wang, & Zhao, 2018). Topluluk yöntemleri kullanılarak CO2 emisyonunun değerinin tahmin edilmesi konusunda çeşitli araştırmalar yapılmıştır (Choi & Hur, 2020;Parker, 2010).…”
Section: Topluluk öğRenme Yöntemleri Tabanlı Literatür çAlışmalarıunclassified