149Word count: 4500Number of tables and figures: 5 . CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/158642 doi: bioRxiv preprint first posted online Jul. 3, 2017; 2 ABSTRACT Molecular mechanisms underpinning the genetic risk for type 2 diabetes (T2D) remain poorly understood, hindering translation into new therapies. Recently, genome-wide studies identified two coding variants in Peptidylglycine Alpha-amidating Monooxygenase (PAM) associated with T2D risk and measures of beta cell dysfunction. Here, we demonstrate that both risk alleles impact negatively on overall PAM activity, but via distinct effects on expression and catalytic function. In a human beta cell model, PAM silencing caused decreased insulin content and altered dynamics of granule exocytosis. Analysis of primary human beta cells from cadaveric donors confirmed an effect on exocytosis in carriers of the p.D563G T2D-risk allele. Finally, we show that the granular packaging protein Chromogranin A is a PAM substrate and a strong candidate for mediating downstream effects on insulin secretion. Taken together, our results establish a role for PAM in beta cell function, and uncover a novel mechanism for T2D-associated PAM alleles.