The bifunctional peptidylglycine alpha-amidating enzyme catalyzes the C-terminal amidation of glycine-extended peptides. The first enzyme activity, peptidylglycine alpha-hydroxylating monooxygenase, catalyzes the oxygen-, ascorbate-, and copper-dependent formation of alpha-hydroxyglycine derivatives. These are substrates for the second enzyme activity, peptidylamidoglycolate lyase, which catalyzes their breakdown to the corresponding C-terminal amidated peptide and glyoxylate as final products. Kinetic and isotope effect studies were carried out with N-benzoylglycine as a substrate at pH 6.0 using monofunctional and bifunctional monooxygenase activities. Kinetic data indicate an equilibrium ordered mechanism, with hippuric acid binding first followed by oxygen. A potentially important difference between the two monooxygenase activities is that product release occurs more slowly from the bifunctional enzyme, indicating an influence of the lyase domain on release of alpha-hydroxyglycine product to solution. Intrinsic isotope effects for the C-H bond cleavage were measured for the monofunctional form of the enzyme using a double-label tracer method, yielding 10.6 +/- 0.8 and 1.20 +/- 0.03 for the primary and alpha-secondary deuterium intrinsic isotope effects, respectively. These values are identical to previous measurements for the analogous enzyme system, dopamine beta-monooxygenase [Miller, S. M., and Klinman, J. P. (1985) Biochemistry 24, 2114-2127]. The identity of intrinsic isotope effects for peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase with substrates of comparable reactivity (N-benzoylglycine and dopamine, respectively) extends similarities between the two enzymes significantly beyond sequence homology and cofactor requirements.
The structure and coordination chemistry of the copper centers in the bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) have been investigated by EPR, EXAFS, and FTIR spectroscopy of a carbonyl derivative. The enzyme contains 2 coppers per 75 kDa protein molecule. Double integration of the EPR spectrum of the oxidized enzyme indicates that 98 +/- 13% of the copper is EPR detectable, indicating that the copper centers are located in mononuclear coordination environments. The Cu(II) coordination of the oxidized enzyme is typical of type 2 copper proteins. EXAFS data are best interpreted by an average coordination of 2-3 histidines and 1-2 O/N (probably O from solvent, Asp or Glu) as equatorial ligands. Reduction causes a major structural change. The Cu(I) centers are shown to be structurally inequivalent since only one of them binds CO. EXAFS analysis of the reduced enzyme data indicates that the nonhistidine O/N shell is displaced, and the Cu(I) coordination involves a maximum of 2.5 His ligands together with 0.5 S/CI ligand per copper. The value of v(CO) (2093 cm-1) derived from FTIR spectroscopy suggests coordination of a weak donor such as methionine, which is supported by a previous observation that the delta Pro-PHM382s mutant M314I is totally inactive. Binding of the peptide substrate N-Ac-Tyr-Val-Gly causes minimum structural perturbation at the Cu(I) centers but appears to induce a more rigid conformation in the vicinity of the S-Met ligand. The unusually intense 8983 eV Cu K-absorption edge feature in reduced and substrate-bound-reduced enzymes is suggestive of a trigonal or digonal coordination environment for Cu(I). A structural model is proposed for the copper centers involving 3 histidines as ligands to CuIA and 2 histidines and 1 methionine as ligands to CuIB. However, in view of the intense 8934 eV edge feature and the lack of CO-binding ability, a 2-coordinate structure for CuA is also entirely consistent with the data.
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA.
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. Keywords N-acylamino acid; N-acyldopamine; N-acylethanolamine; primary fatty acid amide; N-acylamideThe fatty acid amide bond has long been recognized in nature, being important in the structure of the ceramides [1] and the sphingolipids [2]. The first non-sphingosine based fatty acid amide isolated from a natural source was N-palmitoylethanolamine from egg yolk in 1957 [3]. Interest in the N-acylethanolamines (NAEs) dramatically increased upon the identification of Narachidonoylethanolamine (anandamide) as the endogenous ligand for the cannabinoid receptors in the mammalian brain [4]. It is now known that a family of NAEs is found in the brain and in other tissues [5,6].In addition to the NAEs, other classes of fatty acid amides have been characterized, namely the N-acylamino acids (NAAs) [7], the N-acyldopamines (NADAs) [8] and the primary fatty acid amides (PFAMs) [9,10] (Figure 1). Relative to NAEs, much less is currently known about the NAAs, the NADAs and the PFAMs, except that they are found in biological systems. The goal of this review is to summarize the current state of knowledge regarding the different classes of endogenous fatty acid amides and highlight their potential for drug discovery (see refs. [11-13] for earlier reviews) © 2008 Elsevier Ltd. All rights reserved.Corresponding author: Merkler, D.J (E-mail: merkler@cas.usf.edu) phone 813-974-3579; fax 813-974-1733. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.Teaser SentenceFatty acid amides are a family of mammalian bioactive compounds. These molecules and the enzymes involved in their metabolism provide an opportunity to develop new drugs to treat human disease. -palmitoyl-, N-stearoyl-and N-oleoylethanolamine [5,11], each compromising ≥25% of total brain NAEs. Other less abundant NAEs found in the brain are anandamide, N-linoleoyl-, N-linolenoyl-, N-dihomo-γ-linolenoyl-and N-docosatetraenoylethanolamine [11]. In addition to the brain, the NAEs are widespread in the peripheral tissues [5]. The mos...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.