AbstrakSaat ini terdapat banyak lagu yang sudah diproduksi di dunia. Lagu-lagu tersebut digolongkan ke dalam genre berbeda. Ada berbagai macam genre mulai dari pop, rock, classic, reggae, dubstep, dan lain-lain. Perbedaan genre ini disebabkan adanya ketidaksamaan melodi, ketukan, intonasi, dan ekspresi pada masing-masing genre. Saat ini terdapat banyak metode yang digunakan untuk mengenali sebuah lagu, di antaranya audioprint, penggolongan genre, pengenalan ketukan lagu, pengenalan lirik lagu, dan lain-lain. Metode yang dipakai selama ini menggunakan database dengan ciri dari jutaan lagu. Salah satu metode lain adalah dengan mengembangkan sistem identifikasi lagu dengan suatu jaringan saraf terlatih. Penelitian ini akan membahas perancangan sebuah sistem untuk menggolongan lagu berdasarkan spektogram. Masukan sistem berupa lagu dengan format audio MP3 yang diubah ke dalam bentuk spektogram kemudian dilatih menggunakan Convolutional Neural Network. Ciri lagu akan diperoleh kemudian diklasifikan ke dalam lima genre berbeda yaitu pop, rock, classic, dubstep, dan reggae. Berdasarkan hasil pelatihan dan pengujian dengan filter 3x3 didapat nilai akurasi penggolongan lagu sebesar 100% pada 750 data latih dan 98% pada 50 lagu data uji. Algoritme pembelajaran terbaik pada pelatihan dengan filter yang sama adalah algoritme Adam yang lebih cepat dibandingkan dengan Adadelta, Adagrad, dan SGD.
AbstractCurrently there are many songs that have been produced in the world. The songs are classified into different genres. There are various genres ranging from pop, rock, classical, reggae, dubstep, and others. This genre difference occurs in melodic inequality, tapping, intonation, and expression in each genre. Currently there are many methods used to classify a song, such as audioprint, genre classification, song recognition, song lyrics, etc. The method used so far uses a database with features from millions of songs. The other best method is to create a song classification system with a neural network system. This research will discuss the design of a system for classifying songs based on spectrograph. By using spectrograph of songs to be used for training using Convolutional Neural Network. Characteristics of songs will be classified into five genres of pop, rock, classic, dubstep, and reggae. Based on the results of training and testing with 3x3 filter obtained classification for 750 training data by 100% and 50 songs of test data by 98%. The best learning algorithm in training with the same filter is Adam algorithm which is faster compared to Adadelta, Adagrad, and SGD.