1997
DOI: 10.1007/bf02358988
|View full text |Cite
|
Sign up to set email alerts
|

An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary

Abstract: A Jordan domain with a smooth nowhere analytic boundary and a function that is bianalytic in this domain, belongs to the class Lip1 in its closure, vanishes on the boundary, but is not identically zero are constructed.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
2

Year Published

2009
2009
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(6 citation statements)
references
References 2 publications
0
4
0
2
Order By: Relevance
“…A lot of results are already known for conformal maps in model spaces when the inner function θ has a Blaschke part. In fact, the boundaries of such domains may be C 1 but not C 1,α for any α ∈ (0, 1) [2, Theorem 2], may be unrectifiable [11, Example 1] or nowhere analytic [10], or may be rectifiable but admitting no such functions continuable up to the boundary [5,Example 5.8]. Furthermore, the Hausdorff dimension of Nevanlinna domains' boundaries can be any number from 1 up to 2 [3, Theorem 1].…”
Section: Nevanlinna Domains and Model Spacesmentioning
confidence: 99%
“…A lot of results are already known for conformal maps in model spaces when the inner function θ has a Blaschke part. In fact, the boundaries of such domains may be C 1 but not C 1,α for any α ∈ (0, 1) [2, Theorem 2], may be unrectifiable [11, Example 1] or nowhere analytic [10], or may be rectifiable but admitting no such functions continuable up to the boundary [5,Example 5.8]. Furthermore, the Hausdorff dimension of Nevanlinna domains' boundaries can be any number from 1 up to 2 [3, Theorem 1].…”
Section: Nevanlinna Domains and Model Spacesmentioning
confidence: 99%
“…Заметим, что ∂D не может пересекаться ни с какой аналитической дугой на множестве положительной длины (в противном случае непостоянная бианалитическая функция z − A(z) равна нулю на этом множестве). Вместе с тем, существуют области с нигде не аналитической границей, в которых есть непостоянные бианалитические функции, равные нулю на границе [4]. В § § 2-4 исследуется вопрос о разрешимости краевой задачи Дирихле для полианалитических функций, поставленный, в частности, в [5; § 4].…”
Section: введение формулировка результатовunclassified
“…Constructing Nevanlinna domains with irregular (for instance nonanalytic, non-smooth, and even more irregular) boundaries is a rather difficult and delicate problem. It was considered in [23,17,2,26,27]. The detailed account of these results will be given in Section 2 below.…”
Section: Introductionmentioning
confidence: 99%
“…The first example of N -domain with nowhere analytic (but rather smooth) boundary was constructed in [23]. Later on, several constructions of N -domains with boundaries belonging to the class C 1 , but not to the class C 1,α , α ∈ (0, 1), were obtained in [17] and [2].…”
Section: Introductionmentioning
confidence: 99%