<abstract>
<p>Dynamic mathematics software, such as GeoGebra, is a kind of subject-specific digital tool used for enabling users to create mathematical objects and operate them dynamically and interactively, which is very suitable for mathematics teaching and learning at all school levels, especially at the secondary school level. However, limited research has focused on how multiple influencing factors of secondary school teachers' usage behavior of dynamic mathematics software work together. Based on the unified theory of acceptance and use of technology (UTAUT) model, combined with the concept of self-efficacy, this study proposed a conceptual model used to analyze the factors influencing secondary school teachers' usage behavior of dynamic mathematics software. Valid questionnaire data were provided by 393 secondary school mathematics teachers in the Hunan province of China and analyzed using a partial least squares structural equation modeling (PLS-SEM) method. The results showed that social influence, performance expectancy and effort expectancy significantly and positively affected secondary school teachers' behavioral intentions of dynamic mathematics software, and social influence was the greatest influential factor. In the meantime, facilitating conditions, self-efficacy and behavioral intention had significant and positive effects on secondary school teachers' usage behavior of dynamic mathematics software, and facilitating conditions were the greatest influential factor. Results from the multi-group analysis indicated that gender and teaching experience did not have significant moderating effects on all relationships in the dynamic mathematics software usage conceptual model. However, major had a moderating effect on the relationship between self-efficacy and usage behavior, as well as the relationship between behavioral intention and usage behavior. In addition, training had a moderating effect on the relationship between social influence and behavioral intention. This study has made a significant contribution to the development of a conceptual model that could be used to explore how multiple factors affected secondary school teachers' usage behavior of dynamic mathematics software. It also benefits the government, schools and universities in enhancing teachers' digital teaching competencies.</p>
</abstract>