Vapor quality is one of the crucial parameters substantially affecting the flow boiling heat transfer coefficient. Hence, the reliability and accuracy of vapor quality measurements is of a great significance to accurately investigating the effect of vapor quality on the local flow boiling heat transfer coefficients. In the present study, various experimental approaches are represented to measure and control local vapor quality for flow boiling tests. Experimental approaches are classified based on the type of thermal boundary conditions imposed on the tube wall, that is, known constant wall heat flux and constant wall temperature (unknown variable wall heat flux). In addition, in-situ techniques are also investigated to measure local vapor quality regardless of the governing thermal boundary conditions within two-phase flow experiments. Finally, the experimental methodologies are compared based on their level of reliability and accuracy in measurement, costliness and affordability, and simplicity in execution to address their potential merits and demerits.