The mechanism and kinetics of 2,2,3,3,3-pentafluoropropanol (CF₃CF₂CH₂OH) reaction with Chlorine atom (Cl) is investigated in this work. Two hydrogen abstraction channels of the title reaction are identified. The geometries of all the stationary points in the potential energy surface are obtained at the BHandHLYP/6-311G level, and the energies of the selected points along the minimum energy path (MEP) are improved by the CCSD(T) method. A dual-level direct dynamics method is employed to study the kinetic nature of the hydrogen-abstraction reaction channels. The calculated rate coefficients show that the hydrogen abstraction from the CH2 group is the primary channel. The calculated total rate coefficients are in best agreement with the experimental values. The four-parameter rate coefficients expression of the title reaction between the temperatures 200 K and 1000 K is provided.