Hyperthermia generates heat as a cure for illness and it is not a chemical treatment. Nanomaterials are supposed to provide novel mechanisms to tackle photothermal and magnetothermal problems, with the potential also to deal with specific approaches to care. The present review outlines recent developments in the field of photothermal and magnetothermal responsive nanomaterials and the photothermal approach mechanism over the last years. These photo/magnetothermal nanomaterials are classified into gold nanostructures (various shapes), carbon nanomaterials (CNTs, fullerene, carbon quantum dots, and graphene), inorganic nanomaterials (Fe, Pt, Pd, Bi, MOF, MoSe2, inorganic quantum dots, etc.) and organic nanoparticles (PLGA (Poly Lactic‐co‐Glycolic Acid) and other nanopolymers). Different groups may be placed together to improve the potential of the photothermal/magnetothermal effects, treatments, drug delivery, and imaging. The review also describes synthesis strategies for photothermal/magnetothermal nanomaterials, physicochemical characterization, the role of size, size distribution, shape, and surface coating of nanomaterials, challenges, and future scopes of photothermal/magnetothermal responsive nanomaterials for therapy, controlled drug delivery, and imaging applications. The recent development in nanomaterial has shown great potential for tumor diagnostic and therapeutic applications in hyperthermia. Magnetic hyperthermia (also called thermal therapy or thermotherapy) is a type of cancer treatment in which body tissue is exposed to high temperatures (up to 41 °C) in presence of a magnetic field. Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. By killing cancer cells and damaging proteins and structures within cells, hyperthermia can necrotize tumor cells. This treatment can be local, regional, or whole‐body hyperthermia, depending on the extent of the area being treated. Hyperthermia can be combined with anticancer drugs or chemotherapy to enhance cancer treatment. In this article, we have discussed recent nanomaterials utilized for this treatment, mechanism, and synthesis methods.