2018
DOI: 10.1002/tal.1483
|View full text |Cite
|
Sign up to set email alerts
|

An experimental study on the wind pressure distribution of tapered super high‐rise buildings

Abstract: Summary Studies on the effect of different shape strategies on wind‐induced responses of super tall buildings have been extensive. However, little systematic research on the influence of aerodynamic shapes on wind pressure distributions of super high‐rise building having a height more than 500 m is reported in the literature. In this paper, a series of wind tunnel tests are conducted on models simulating tapered buildings taller than 500 m with an aspect ratio of 9:1 by applying synchronous pressure measuremen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

1
17
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(20 citation statements)
references
References 16 publications
1
17
0
2
Order By: Relevance
“…14 Compared with square or quasi-square buildings, the tapered or setback buildings can effectively mitigate the across-wind loads and wind-induced responses. [15][16][17][18][19][20][21] In view of the facts mentioned above, wind veering effects on wind loads of kilometer-scale super tall buildings with several typical configurations, i.e., square, tapered, and setback configurations, are numerically investigated based on the LES method in this study, aiming at providing a deep insight into the characteristics of wind load distribution and flow fields of these typical buildings subject to the veering wind. First, the LESs of unsteady flow around three buildings, namely, a square building, a tapered building (tapering ratio: 6.6%), and a four-layer setback building with the same height and the same aspect ratio of 9:1, are performed in a non-veering wind field (hereafter referred to as Case 1).…”
Section: Introductionmentioning
confidence: 99%
“…14 Compared with square or quasi-square buildings, the tapered or setback buildings can effectively mitigate the across-wind loads and wind-induced responses. [15][16][17][18][19][20][21] In view of the facts mentioned above, wind veering effects on wind loads of kilometer-scale super tall buildings with several typical configurations, i.e., square, tapered, and setback configurations, are numerically investigated based on the LES method in this study, aiming at providing a deep insight into the characteristics of wind load distribution and flow fields of these typical buildings subject to the veering wind. First, the LESs of unsteady flow around three buildings, namely, a square building, a tapered building (tapering ratio: 6.6%), and a four-layer setback building with the same height and the same aspect ratio of 9:1, are performed in a non-veering wind field (hereafter referred to as Case 1).…”
Section: Introductionmentioning
confidence: 99%
“…Com finalidade de uma análise mais generalizada do efeito da pressão efetiva em coberturas com a presença de platibandas, foi empregada uma edificação residencial de um único pavimento, conduzindo os cálculos a partir do nível do solo a laje superior, onde a partir dessa altura foi considerada uma platibanda de altura variável para efeitos de cálculo. A NBR 6123 considera duas situações imprescindíveis da consideração dos efeitos dinâmicos da interação fluido-estrutura, em estruturas com frequências próprias fundamentais inferiores a 1 Hz e em edificações esbeltas e flexíveis, onde mostra-se necessário estudar a estabilidade da construção (DENG et al, 2018;NUNES, 2008).…”
Section: Introductionunclassified
“…Com finalidade de uma análise mais generalizada do efeito da pressão efetiva em coberturas com a presença de platibandas, foi empregada uma edificação residencial de um único pavimento, conduzindo os cálculos a partir do nível do solo a laje superior, onde a partir dessa altura foi considerada uma platibanda de altura variável para efeitos de cálculo. A NBR 6123 considera duas situações imprescindíveis da consideração dos efeitos dinâmicos da interação fluido-estrutura, em estruturas com frequências próprias fundamentais inferiores a 1 e em edificações esbeltas e flexíveis, onde mostra-se necessário estudar a estabilidade da construção (DENG et al, 2018;NUNES, 2008).…”
Section: Introductionunclassified